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DESC! is a pseudo-spectral stellarator equilibrium solver that:
1. Uses global spectral methods with Fourier & Zernike basis functions

* Properly resolves the magnetic axis
* Minimizes the system dimensionality
* Gives a global solution (no interpolation between flux surfaces)
2. Solves force balance directly in real space (instead of the energy principle)
* Avoids numerical issues at rational surfaces
* Allows for perturbations to easily search the equilibrium solution space
3. Is written modern Python with high-level structure
* Easy to use and extend the code for individual applications

* Designed for stellarator optimization: automatic differentiation, GPUs, etc.

4. Currently solves fixed-boundary equilibria with nested flux surfaces
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 Computation domain is the straight field-
line coordinate system

(p,9,¢)

* Free variables are the flux surface shapes

R(p,¥,0) & Z(p,Y,7)

 Problem is to find the flux surfaces that
satisfy the equilibrium conditions:

JXB=Vp
VXB = o)
V-B=0
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Fourier-Zernike Basis Set

 Discretize flux surfaces with global Fourier-
Zernike? spectral basis functions:

R(p,9,) = ) RunnZ{" (0, 0)F"(©)
2(0,8,8) = ) ZimnZ1" (0, O)F"(S)

* Inherently satisfies analytic boundary
conditions at the magnetic axis

* Number of basis functions scales as M*N /2
(about half as many terms as other methods)
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Magnetic Field in Flux Coordinates

* Assume?3 nested flux surfaces: B - Vp = 0, and Gauss’slaw: V- B =0

o O C [9,R] )
— (leﬁ +e;) e, = aoz
| P
B(p,9,{) = B(R(p,9,0),Z(p,9,0),u(p)) ENG
* Using Ampere’s Law: V X B = ] €o = OOZ
L 19 =
]p 6193(_6{319 ]19 _ 6{Bp—asz ]( _ apBg—ang acR
ovg novg Hog e; = R
0:Z
J(p.9,0) = J(R(p,9,0),Z(p, 9, ), 1(p)) LY
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* MHD force balance error*: F=]JXB—-Vp =20 [ len }
Zmn
st in Banc ) i f;f([;g}gﬁﬁBﬁjf) ! spectral 1ltransform
= VY — — P

R (g
* Form scalar equations:  f, = F,||Vpl| V-B=04VxB=u

f5 = F5lIBI [ 1;((53;)) }
* An equilibrium is a solution to the system of equations LIxB=vp

f(x) = 0, solved at a given set of collocation points () = f,(p,9,0)
PO = 60,9,0)
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Convergence: Heliotron (B) ~ 2%
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Error: Heliotron (B) = 2%
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Equilibrium Perturbations

e 1s—order Taylor expansion about an equilibrium solution:

0 0
f(xM%C) =f C)J‘ %Ax + a—]ccAC /c = input parameters: )

* pressure profile

of -1 of * boundary modes
Ax = — (5> %AC \° etc. .

* The new equilibrium solution for any perturbation Ac is trivial to approximate:

X" =x+ Ax 4

-1
Jacobian matrix (ﬂ)
ox

was already computed

o ‘o <ol Tibr
* Has been extended to 2"9—order approximations o solve equitibrium
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* Can be used to find solution branches in parameter space

J




3D Boundary Perturbation

* Perturbing an axisymmetric solution gives an accurate stellarator equilibrium!




Quasi-Symmetric Perturbations

* Define a measure of quasi-symmetry (no Boozer coordinate transform needed!)

g(x,c) =V xXVB-V(B-VB)

e 1st—order Taylor expansion about an equilibrium QS solution:
X + + Ac) = +—Ax+—Ac
g( \AvN'\ ) = g?i\)o ox'

_og(of\"of og|,
ox \ 0x ac 6c

* Resulting eigenvalue problem: GAc =0

* Eigenvectors of G corresponding to A = 0 are perturbations that preserve QS
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Summary

DESC is a stellarator equilibrium solver with the following advantages:

* Properly resolves the magnetic axis

* Minimizes the system dimensionality

* Gives a global solution (no interpolation between flux surfaces)

* Avoids numerical issues at rational surfaces

* Allows for perturbations to easily search the equilibrium solution space
e Easy to use and extend the code for individual applications

* Designed for stellarator optimization: automatic differentiation, GPUs, etc.
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Future Development

* Improved performance, user interface, documentation
* Quasi-symmetry optimization
 |deal MHD stability calculations
* Free-boundary equilibria

* Magnetic islands & stochastic regions
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https://github.com/ddudt/DESC
https://aip.scitation.org/doi/10.1063/5.0020743
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Bonus Slides




9 =60+ A0, d)

toroidal coordinates: (R, ¢, Z) straight field-line coordinates: (p, 9, {)
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Axisymmetric Results: “D-shape” (B) =~ 3%

| Fl
”Vp(p = 05)” - 1%-10%

Z [m] 0

4 5 2 3
R [m] R [m]

APS DPP November 9, 2020



Axisymmetric Results: “D-shape” (B) =~ 3%

* Accuracy metrics: f Bel

o= (2

21 21T ,1
ce=[ [ IFlovgdodoas
0 0 0

m]
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Boundary Condition: Magnetic Axis

* An analytic function expanded near the origin of a disc must have a real Fourier
series of the form?2:

f(p;ﬁ) = z pm(am,o T+ a'm,zp2 + am,4p4 T ) cos(mdv)
m

+Z pm(bm,o + by 20% + b ap® + - ) sin(md9)
m

* The Zernike polynomials inherently satisfy this condition!

 Reduces the number of variables by eliminating the unnecessary high-
frequency modes near the axis

 No additional boundary condition equations need to be solved

1J. P. Boyd and F. Yu, J. Comput. Phys. 230, 1408-1438 (2011).
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Boundary Condition: Last Closed Flux Surface

* Fixed-boundary surface is given as: R? = R?(6, ¢), Z? = Z°(6, ¢)
* Last closed flux surface is evaluated as: R|,—1 = R(9,{), Z|,=1 = Z(¥,{)

* Introduce A(8, ¢) to convert between coordinates: 9 = 6 + A(0,¢), { = ¢
R‘ = Z Run¥F(@,{) = R‘ = z R, F(6,d)
p=1 mmn p=1 m,n
Z‘ = z ZenF(©0,() = Z| = z Z.nF (6, )
p=1 m,n p=1 m,n

* Boundary condition: Zlﬁlmn = Rﬁm 2 Zimn = Zvlvjm
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Collocation Nodes

* The computational grid is a finite set of discrete points (p;, 9;, {;)

The force balance errors f,(p,9,{) & fg(p, ¥, {) are minimized at these nodes

The equilibrium solution is still valid everywhere, and spectral collocation theory
predicts global convergence ; - T

Great flexibility in choosing the nodes
e Control grid refinement

* Avoid rational surfaces
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Continuation Methods

1. Perturbations to solve for complex equilibria:

e vacuum solution = pressure perturbation - finite-B solution

* axisymmetric tokamak = boundary perturbation = 3D stellarator
2. Perturbations to optimize for quasi-symmetry:

 axisymmetric tokamak = boundary perturbation = QA stellarator

* non-QS equilibrium = perturb some inputs = more-QS equilibrium

APS DPP November 9, 2020




Order of Derivatives Variables Equations

0 R,Z

1 0,R,0,Z > B V-B=0
2 0R,0;;Z — ] JXxB=Vp
3 3;ixR, 01 Z V-J=0

* The equilibrium equations are a 2"%-order ODE

* Rational surface issues arise at the next higher level withV-J =0
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Equilibrium Example Inputs

Axisymmetric Non-Axisymmetric
“D-shaped” Tokamak high-B Heliotron
R? = 3.51 — cos 8 + 0.106 cos 26 R? =10 — cos 8 — 0.3 cos(0 — 19¢)
7% =1.47sin @ + 0.16 sin 26 ZP =sin @ — 0.3 sin(8 — 19¢)
(=1-0.67p? ( = 1.5p% 4+ 0.5
p = 1.65 x 103(1 — p?)° p=34x%x103(1-p?)

Yo =1 Yo =1
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Perturbation Example Inputs

Axisymmetric Non-Axisymmetric
M=6N=2
RP =5 —cos@ RP =5—cosf — 0.2 cos(0 — ¢)
7P = sin @ ZP =sin0 — 0.2 sin(0 — ¢)
t = 1.618 t =1.618
p= p=0

Yo = v, =1
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