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Overview & Motivation

DESC1 is a pseudo-spectral stellarator equilibrium solver that: 

1. Uses global spectral methods with Fourier & Zernike basis functions

• Properly resolves the magnetic axis

• Minimizes the system dimensionality

• Gives a global solution (no interpolation between flux surfaces)

2. Solves force balance directly in real space (instead of the energy principle)

• Avoids numerical issues at rational surfaces

• Allows for perturbations to easily search the equilibrium solution space

3. Is written modern Python with high-level structure

• Easy to use and extend the code for individual applications

• Designed for stellarator optimization: automatic differentiation, GPUs, etc.

4. Currently solves fixed-boundary equilibria with nested flux surfaces

APS DPP November 9, 2020 21D. W. Dudt, and E. Kolemen, Phys. Plasmas 27 102513 (2020).



“Inverse” Equilibrium Problem

• Computation domain is the straight field-
line coordinate system

(𝜌, 𝜗, 𝜁)

• Free variables are the flux surface shapes

𝑅(𝜌, 𝜗, 𝜁) & 𝑍(𝜌, 𝜗, 𝜁)

• Problem is to find the flux surfaces that 
satisfy the equilibrium conditions:

𝑱 × 𝑩 = 𝛁𝑝
𝛁 × 𝑩 = 𝜇0𝑱
𝛁 ⋅ 𝑩 = 0
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Fourier-Zernike Basis Set

• Discretize flux surfaces with global Fourier-
Zernike2 spectral basis functions:

𝑅 𝜌, 𝜗, 𝜁 =෍𝑅𝑙𝑚𝑛𝒵𝑙
𝑚 𝜌, 𝜗 ℱ𝑛(𝜁)

Z 𝜌, 𝜗, 𝜁 =෍𝑍𝑙𝑚𝑛𝒵𝑙
𝑚 𝜌, 𝜗 ℱ𝑛(𝜁)

• Inherently satisfies analytic boundary 
conditions at the magnetic axis

• Number of basis functions scales as Τ𝑀2𝑁 2
(about half as many terms as other methods)

              
 

   

   

   

   

   

   

   

   

   

 

  

 

 

𝑀 = 2
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Magnetic Field in Flux Coordinates

• Assume3 nested flux surfaces: 𝑩 ⋅ 𝛁𝜌 = 0, and Gauss’s law: 𝛁 ⋅ 𝑩 = 0

𝑩 =
𝜕𝜌𝜓

𝜋 𝑔
𝜄𝒆𝜗 + 𝒆𝜁

𝑩 𝜌, 𝜗, 𝜁 = 𝑩 𝑅 𝜌, 𝜗, 𝜁 , 𝑍 𝜌, 𝜗, 𝜁 , 𝜄(𝜌)

• Using Ampere’s Law: 𝛁 × 𝑩 = 𝜇0𝑱

𝐽𝜌 =
𝜕𝜗𝐵𝜁−𝜕𝜁𝐵𝜗

𝜇0 𝑔
,  𝐽𝜗 =

𝜕𝜁𝐵𝜌−𝜕𝜌𝐵𝜁

𝜇0 𝑔
,  𝐽𝜁 =

𝜕𝜌𝐵𝜗−𝜕𝜗𝐵𝜌

𝜇0 𝑔

𝑱 𝜌, 𝜗, 𝜁 = 𝑱 𝑅 𝜌, 𝜗, 𝜁 , 𝑍 𝜌, 𝜗, 𝜁 , 𝜄(𝜌)

𝒆𝜌 =

𝜕𝜌𝑅

0
𝜕𝜌𝑍

𝒆𝜗 =
𝜕𝜗𝑅
0
𝜕𝜗𝑍

𝒆𝜁 =

𝜕𝜁𝑅

𝑅
𝜕𝜁𝑍
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𝛁 ⋅ 𝑩 = 0 𝛁 × 𝑩 = 𝜇0𝑱

spectral    transform

𝐉 × 𝑩 = 𝛁𝑝

Force Balance Equations

• MHD force balance error 4: 𝑭 ≡ 𝑱 × 𝑩 − 𝛁𝑝 = 𝟎

• Substitute in 𝑩 and 𝑱:

• Form scalar equations:

• An equilibrium is a solution to the system of equations 
𝒇 𝒙 ≈ 𝟎, solved at a given set of collocation points  
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𝑭 = 𝐹𝜌𝛁𝜌 + 𝐹𝛽𝜷

𝐹𝜌 = 𝑔 𝐵𝜁𝐽𝜗 − 𝐵𝜗𝐽𝜁 − 𝑝′

𝐹𝛽 = 𝑔𝐽𝜌

𝜷 = 𝐵𝜁𝛁𝜗 − 𝐵𝜗𝛁𝜁

𝑓𝜌 = 𝐹𝜌 𝛁𝜌

𝑓𝛽 = 𝐹𝛽 𝜷

𝑅𝑙𝑚𝑛 → 𝑅 𝜌, 𝜗, 𝜁

𝑍𝑙𝑚𝑛 → 𝑍(𝜌, 𝜗, 𝜁)

𝑩 𝜌, 𝜗, 𝜁
𝑱 𝜌, 𝜗, 𝜁

𝒇 𝒙 =
𝑓𝜌 𝜌, 𝜗, 𝜁

𝑓𝛽 𝜌, 𝜗, 𝜁

𝒙 =
𝑅𝑙𝑚𝑛
𝑍𝑙𝑚𝑛

4S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553–3568 (1983).



Convergence: Heliotron 𝛽 ≈ 2%

dimension ≈ 2 × 105

dimension ≈ 5 × 103
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Error: Heliotron 𝛽 ≈ 2%

𝑭

𝛁𝑝 𝜌 = 0.5
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𝜀𝑥 =
Δ𝑅𝑖
Δ𝑍𝑖

𝜀𝐹 = න
0

2𝜋

න
0

2𝜋

න
0

1

𝑭 2 𝑔𝑑𝜌𝑑𝜗𝑑𝜁



Equilibrium Perturbations

• 1st–order Taylor expansion about an equilibrium solution: 

𝒇 𝒙 + Δ𝒙, 𝒄 + Δ𝒄 = 𝒇 𝒙, 𝒄 +
𝜕𝒇

𝜕𝒙
Δ𝒙 +

𝜕𝒇

𝜕𝒄
Δ𝒄

Δ𝒙 = −
𝜕𝒇

𝜕𝒙

−1
𝜕𝒇

𝜕𝒄
Δ𝐜

• The new equilibrium solution for any perturbation Δ𝐜 is trivial to approximate:

𝒙∗ = 𝒙 + Δ𝒙

• Can be used to find solution branches in parameter space

• Has been extended to 2nd–order approximations

00
𝒄 = input parameters:
• pressure profile
• boundary modes
• etc.
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Jacobian matrix 
𝜕𝒇

𝜕𝒙

−1

was already computed 
to solve equilibrium



3D Boundary Perturbation
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• Perturbing an axisymmetric solution gives an accurate stellarator equilibrium!



Quasi-Symmetric Perturbations

• Define a measure of quasi-symmetry (no Boozer coordinate transform needed!)

𝒈 𝒙, 𝒄 ≡ 𝛁𝜓 × 𝛁𝐵 ⋅ 𝛁 𝑩 ⋅ 𝛁𝐵

• 1st –order Taylor expansion about an equilibrium QS solution: 

𝒈 𝒙 + Δ𝒙, 𝒄 + Δ𝒄 = 𝒈 𝒙, 𝒄 +
𝜕𝒈

𝜕𝒙
Δ𝒙 +

𝜕𝒈

𝜕𝒄
Δ𝒄

= −
𝜕𝒈

𝜕𝒙

𝜕𝒇

𝜕𝒙

−1
𝜕𝒇

𝜕𝒄
+
𝜕𝒈

𝜕𝒄
Δ𝒄

• Resulting eigenvalue problem:    𝑮Δ𝒄 = 𝟎

• Eigenvectors of 𝑮 corresponding to 𝜆 = 0 are perturbations that preserve QS

0
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Summary

DESC is a stellarator equilibrium solver with the following advantages: 

• Properly resolves the magnetic axis

• Minimizes the system dimensionality

• Gives a global solution (no interpolation between flux surfaces)

• Avoids numerical issues at rational surfaces

• Allows for perturbations to easily search the equilibrium solution space

• Easy to use and extend the code for individual applications

• Designed for stellarator optimization: automatic differentiation, GPUs, etc.
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Future Development

• Improved performance, user interface, documentation

• Quasi-symmetry optimization

• Ideal MHD stability calculations

• Free-boundary equilibria

• Magnetic islands & stochastic regions

Repository: https://github.com/ddudt/DESC

Publication: D. W. Dudt, and E. Kolemen, Phys. Plasmas 27 102513 (2020)
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Bonus Slides
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PEST1 Flux Coordinates

toroidal coordinates: (𝑅, 𝜙, 𝑍) straight field-line coordinates: (𝜌, 𝜗, 𝜁)

1R. C. Grimm, J. M. Greene, and J. L. Johnson (Academic Press, Inc, New York, 1976) pp. 253–280.

𝑅

𝜙

𝑍 𝑅

𝑍

𝜌 = ൗ
𝜓
𝜓𝑎

𝜗 = 𝜃 + 𝜆 𝜃, 𝜙

𝜁 = 𝜙

𝜃

𝜆
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Axisymmetric Results: “D-shape” 𝛽 ≈ 3%

𝑭

𝛁𝑝 𝜌 = 0.5

APS DPP November 9, 2020 17



Axisymmetric Results: “D-shape” 𝛽 ≈ 3%

• Accuracy metrics:

𝜀𝑥 =
Δ𝑅𝑖
Δ𝑍𝑖

𝜀𝐹 = න
0

2𝜋

න
0

2𝜋

න
0

1

𝑭 2 𝑔𝑑𝜌𝑑𝜗𝑑𝜁
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Boundary Condition: Magnetic Axis

• An analytic function expanded near the origin of a disc must have a real Fourier 
series of the form1,2:

𝑓 𝜌, 𝜗 =෍
𝑚
𝜌𝑚 𝑎𝑚,0 + 𝑎𝑚,2𝜌

2 + 𝑎𝑚,4𝜌
4 +⋯ cos 𝑚𝜗

+෍
𝑚
𝜌𝑚 𝑏𝑚,0 + 𝑏𝑚,2𝜌

2 + 𝑏𝑚,4𝜌
4 +⋯ sin 𝑚𝜗

• The Zernike polynomials inherently satisfy this condition!  

• Reduces the number of variables by eliminating the unnecessary high-
frequency modes near the axis

• No additional boundary condition equations need to be solved

1J. P. Boyd and F. Yu, J. Comput. Phys. 230, 1408–1438 (2011).
2H. R. Lewis and P. M. Bellan, J. Math. Phys. 31, 2592–2596 (1990).
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Boundary Condition: Last Closed Flux Surface

• Fixed-boundary surface is given as: 𝑅𝑏 = 𝑅𝑏(𝜃, 𝜙), 𝑍𝑏 = 𝑍𝑏(𝜃, 𝜙)

• Last closed flux surface is evaluated as: ȁ𝑅 𝜌=1 = 𝑅(𝜗, 𝜁), ȁ𝑍 𝜌=1 = 𝑍(𝜗, 𝜁)

• Introduce 𝜆(𝜃, 𝜙) to convert between coordinates: 𝜗 = 𝜃 + 𝜆(𝜃, 𝜙), 𝜁 = 𝜙

ቚ𝑅
𝜌=1

=෍
𝑚,𝑛

𝑅𝑚𝑛ℱ(𝜗, 𝜁) ⟹ ቚ𝑅
𝜌=1

=෍
𝑚,𝑛

෨𝑅𝑚𝑛ℱ 𝜃,𝜙

ቚ𝑍
𝜌=1

=෍
𝑚,𝑛

𝑍𝑚𝑛ℱ(𝜗, 𝜁) ⟹ ቚ𝑍
𝜌=1

=෍
𝑚,𝑛

෨𝑍𝑚𝑛ℱ 𝜃,𝜙

• Boundary condition: σ𝑙
෨𝑅𝑙𝑚𝑛 = 𝑅𝑚𝑛

𝑏 σ𝑙 𝑍𝑙𝑚𝑛 = ෨𝑍𝑚𝑛
𝑏
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Collocation Nodes

• The computational grid is a finite set of discrete points (𝜌𝑖 , 𝜗𝑖 , 𝜁𝑖)

• The force balance errors 𝑓𝜌(𝜌, 𝜗, 𝜁) & 𝑓𝛽(𝜌, 𝜗, 𝜁) are minimized at these nodes

• The equilibrium solution is still valid everywhere, and spectral collocation theory 
predicts global convergence

• Great flexibility in choosing the nodes

• Control grid refinement

• Avoid rational surfaces
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Continuation Methods

1. Perturbations to solve for complex equilibria:

• vacuum solution → pressure perturbation → finite-β solution

• axisymmetric tokamak → boundary perturbation → 3D stellarator

2. Perturbations to optimize for quasi-symmetry:

• axisymmetric tokamak → boundary perturbation → QA stellarator

• non-QS equilibrium → perturb some inputs →more-QS equilibrium
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Order of ODE to Solve

Order of Derivatives Variables Equations

0 𝑅, 𝑍

1 𝜕𝑖𝑅, 𝜕𝑖𝑍 → 𝑩 𝛁 ⋅ 𝑩 = 0

2 𝜕𝑖𝑗𝑅, 𝜕𝑖𝑗𝑍 → 𝑱 𝑱 × 𝑩 = 𝛁𝑝

3 𝜕𝑖𝑗𝑘𝑅, 𝜕𝑖𝑗𝑘𝑍 𝛁 ⋅ 𝑱 = 0

• The equilibrium equations are a 2nd-order ODE

• Rational surface issues arise at the next higher level with 𝛁 ⋅ 𝑱 = 0
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Equilibrium Example Inputs

Axisymmetric

“D-shaped” Tokamak

𝑅𝑏 = 3.51 − cos 𝜃 + 0.106 cos 2𝜃
𝑍𝑏 = 1.47 sin 𝜃 + 0.16 sin 2𝜃
𝜄 = 1 − 0.67𝜌2

𝑝 = 1.65 × 103 1 − 𝜌2
2

𝜓𝑎 = 1

Non-Axisymmetric

high-β Heliotron

𝑅𝑏 = 10 − cos 𝜃 − 0.3 cos 𝜃 − 19𝜙
𝑍𝑏 = sin 𝜃 − 0.3 sin 𝜃 − 19𝜙
𝜄 = 1.5𝜌2 + 0.5

𝑝 = 3.4 × 103 1 − 𝜌2
2

𝜓𝑎 = 1
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Perturbation Example Inputs

Axisymmetric

𝑅𝑏 = 5 − cos 𝜃
𝑍𝑏 = sin 𝜃
𝜄 = 1.618
𝑝 = 0

𝜓𝑎 = 1

Non-Axisymmetric

𝑅𝑏 = 5 − cos 𝜃 − 0.2 cos 𝜃 − 𝜙
𝑍𝑏 = sin 𝜃 − 0.2 sin 𝜃 − 𝜙
𝜄 = 1.618
𝑝 = 0

𝜓𝑎 = 1

𝑀 = 6, 𝑁 = 2
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