

DESC: An Efficient Stellarator Equilibrium Code

Daniel Dudt¹

Egemen Kolemen^{1,2}

¹Princeton University

²Princeton Plasma Physics Laboratory

Overview & Motivation

DESC¹ is a pseudo-spectral stellarator equilibrium solver that:

- 1. Uses global spectral methods with Fourier & Zernike basis functions
 - Properly resolves the magnetic axis
 - Minimizes the system dimensionality
 - Gives a global solution (no interpolation between flux surfaces)
- 2. Solves force balance directly in real space (instead of the energy principle)
 - Avoids numerical issues at rational surfaces
 - Allows for perturbations to easily search the equilibrium solution space
- 3. Is written modern Python with high-level structure
 - Easy to use and extend the code for individual applications
 - Designed for stellarator optimization: automatic differentiation, GPUs, etc.
- 4. Currently solves fixed-boundary equilibria with nested flux surfaces

"Inverse" Equilibrium Problem

• Computation domain is the straight fieldline coordinate system

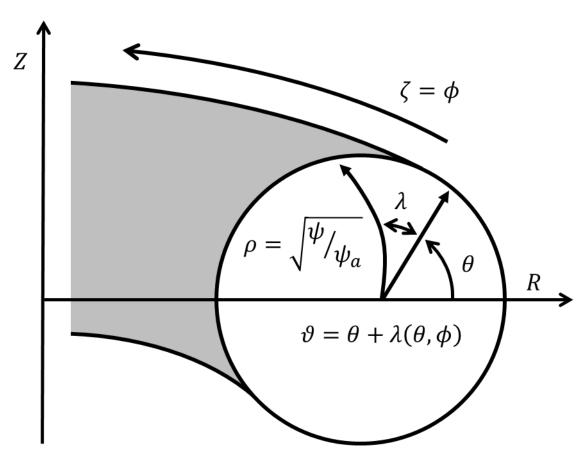
 (ρ,ϑ,ζ)

• Free variables are the flux surface shapes

 $R(\rho, \vartheta, \zeta) \& Z(\rho, \vartheta, \zeta)$

• Problem is to find the flux surfaces that satisfy the equilibrium conditions:

 $J \times B = \nabla p$ $\nabla \times B = \mu_0 J$ $\nabla \cdot B = 0$

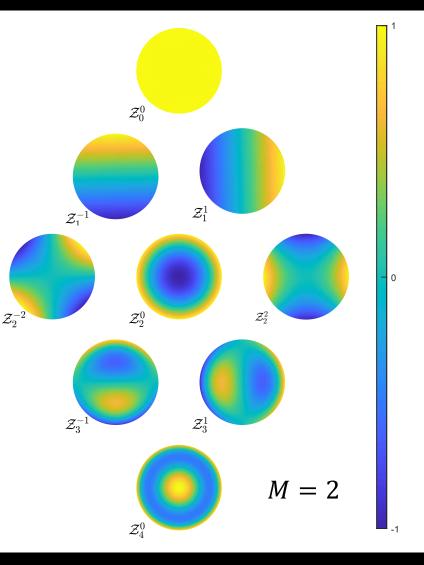


Fourier-Zernike Basis Set

• Discretize flux surfaces with global Fourier-Zernike² spectral basis functions:

$$R(\rho,\vartheta,\zeta) = \sum R_{lmn} \mathcal{Z}_l^m(\rho,\vartheta) \mathcal{F}^n(\zeta)$$
$$Z(\rho,\vartheta,\zeta) = \sum Z_{lmn} \mathcal{Z}_l^m(\rho,\vartheta) \mathcal{F}^n(\zeta)$$

- Inherently satisfies analytic boundary conditions at the magnetic axis
- Number of basis functions scales as $M^2N/2$ (about half as many terms as other methods)



Magnetic Field in Flux Coordinates

• Assume³ nested flux surfaces: $\boldsymbol{B} \cdot \boldsymbol{\nabla} \rho = 0$, and Gauss's law: $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$

$$\boldsymbol{B} = \frac{\partial_{\rho}\psi}{\pi\sqrt{g}} \left(\iota \boldsymbol{e}_{\vartheta} + \boldsymbol{e}_{\zeta} \right)$$

$$\boldsymbol{B}(\rho,\vartheta,\zeta) = \boldsymbol{B}(R(\rho,\vartheta,\zeta),Z(\rho,\vartheta,\zeta),\iota(\rho))$$

• Using Ampere's Law: $\nabla \times B = \mu_0 J$

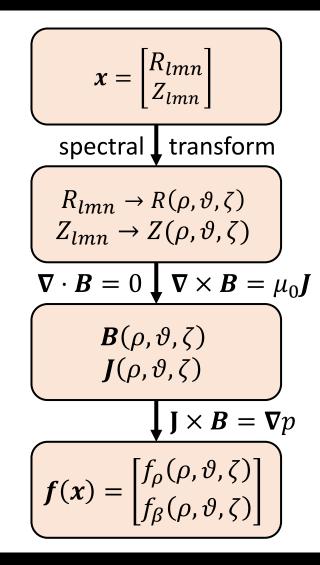
$$J^{\rho} = \frac{\partial_{\vartheta} B_{\zeta} - \partial_{\zeta} B_{\vartheta}}{\mu_0 \sqrt{g}}, J^{\vartheta} = \frac{\partial_{\zeta} B_{\rho} - \partial_{\rho} B_{\zeta}}{\mu_0 \sqrt{g}}, J^{\zeta} = \frac{\partial_{\rho} B_{\vartheta} - \partial_{\vartheta} B_{\rho}}{\mu_0 \sqrt{g}}$$
$$J(\rho, \vartheta, \zeta) = J(R(\rho, \vartheta, \zeta), Z(\rho, \vartheta, \zeta), \iota(\rho))$$

 $\begin{bmatrix} \overline{\partial_{\vartheta} R} \\ 0 \end{bmatrix}$

 $e_{artheta} = 1$

Force Balance Equations

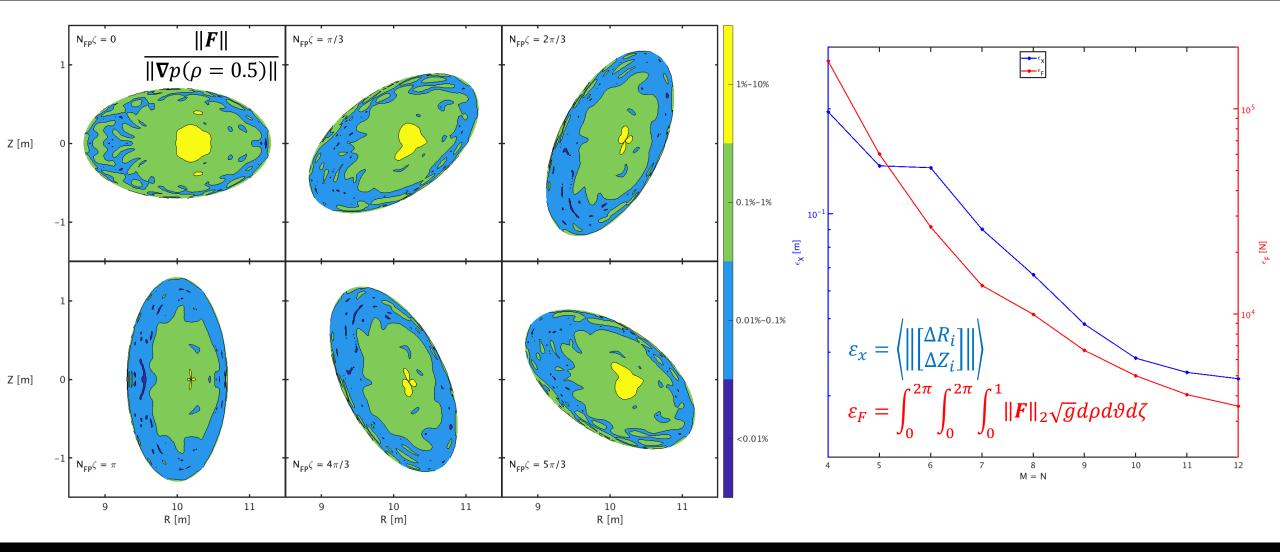
- MHD force balance error ⁴: $F \equiv J \times B \nabla p = 0$
- Substitute in **B** and **J**: $\boldsymbol{F} = F_{\rho} \boldsymbol{\nabla} \rho + F_{\beta} \boldsymbol{\beta}$ $F_{\rho} = \sqrt{g} \left(B^{\zeta} J^{\vartheta} - B^{\vartheta} J^{\zeta} \right) - p'$ $F_{\beta} = \sqrt{g} J^{\rho}$ $\boldsymbol{\beta} = B^{\zeta} \boldsymbol{\nabla} \vartheta - B^{\vartheta} \boldsymbol{\nabla} \zeta$ $f_{\rho} = F_{\rho} \| \nabla \rho \|$ • Form scalar equations:
- $f_{\beta} = F_{\beta} \| \boldsymbol{\beta} \|$
- An equilibrium is a solution to the system of equations $f(x) \approx 0$, solved at a given set of collocation points



Convergence: Heliotron $\langle \beta \rangle \approx 2\%$



Error: Heliotron $\langle \beta \rangle \approx 2\%$



Equilibrium Perturbations

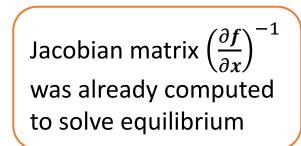
• 1st—order Taylor expansion about an equilibrium solution:

$$f(x + \Delta x, c + \Delta c) = f(x, c) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial c} \Delta c$$
$$\Delta x = -\left(\frac{\partial f}{\partial x}\right)^{-1} \frac{\partial f}{\partial c} \Delta c$$

- c = input parameters:
- pressure profile
- boundary modes
- etc.
- The new equilibrium solution for any perturbation Δc is trivial to approximate:

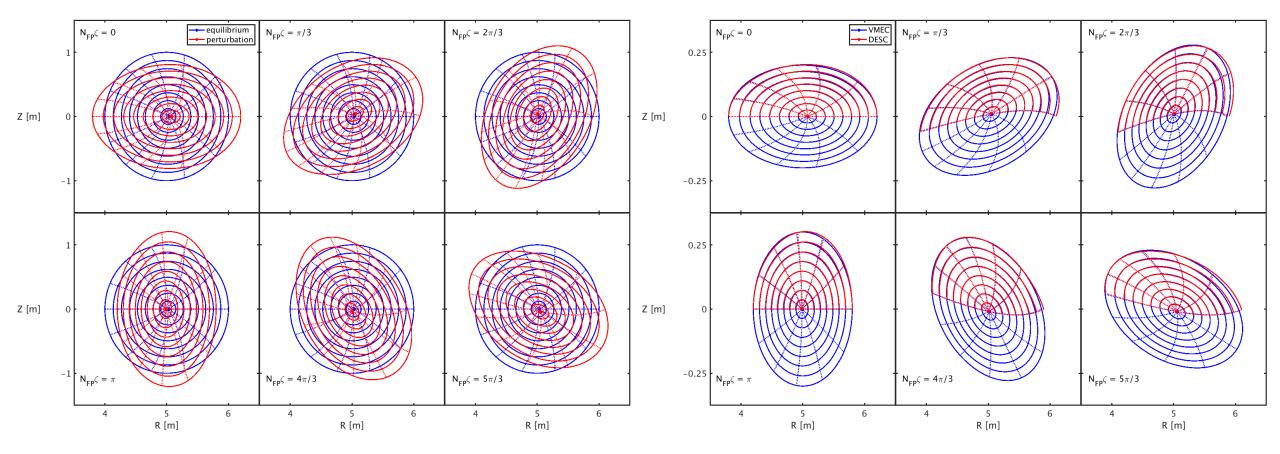
 $\boldsymbol{x}^* = \boldsymbol{x} + \Delta \boldsymbol{x}$

- Can be used to find solution branches in parameter space
- Has been extended to 2nd–order approximations



3D Boundary Perturbation

• Perturbing an axisymmetric solution gives an accurate stellarator equilibrium!



Quasi-Symmetric Perturbations

• Define a measure of quasi-symmetry (no Boozer coordinate transform needed!)

$$\boldsymbol{g}(\boldsymbol{x},\boldsymbol{c}) \equiv \nabla \boldsymbol{\psi} \times \nabla \boldsymbol{B} \cdot \nabla (\boldsymbol{B} \cdot \nabla \boldsymbol{B})$$

• 1st –order Taylor expansion about an equilibrium QS solution:

$$g(x + \Delta x, c + \Delta c) = g(x, c) + \frac{\partial g}{\partial x} \Delta x + \frac{\partial g}{\partial c} \Delta c$$
$$= \left[-\frac{\partial g}{\partial x} \left(\frac{\partial f}{\partial x} \right)^{-1} \frac{\partial f}{\partial c} + \frac{\partial g}{\partial c} \right] \Delta c$$

- Resulting eigenvalue problem: $G \Delta c = 0$
- Eigenvectors of **G** corresponding to $\lambda = 0$ are perturbations that preserve QS

Summary

DESC is a stellarator equilibrium solver with the following advantages:

- Properly resolves the magnetic axis
- Minimizes the system dimensionality
- Gives a global solution (no interpolation between flux surfaces)
- Avoids numerical issues at rational surfaces
- Allows for perturbations to easily search the equilibrium solution space
- Easy to use and extend the code for individual applications
- Designed for stellarator optimization: automatic differentiation, GPUs, etc.

Future Development

- Improved performance, user interface, documentation
- Quasi-symmetry optimization
- Ideal MHD stability calculations
- Free-boundary equilibria
- Magnetic islands & stochastic regions

Repository: https://github.com/ddudt/DESC

Publication: D. W. Dudt, and E. Kolemen, Phys. Plasmas 27 102513 (2020)

References

¹D. W. Dudt, and E. Kolemen, Phys. Plasmas **27** 102513 (2020).

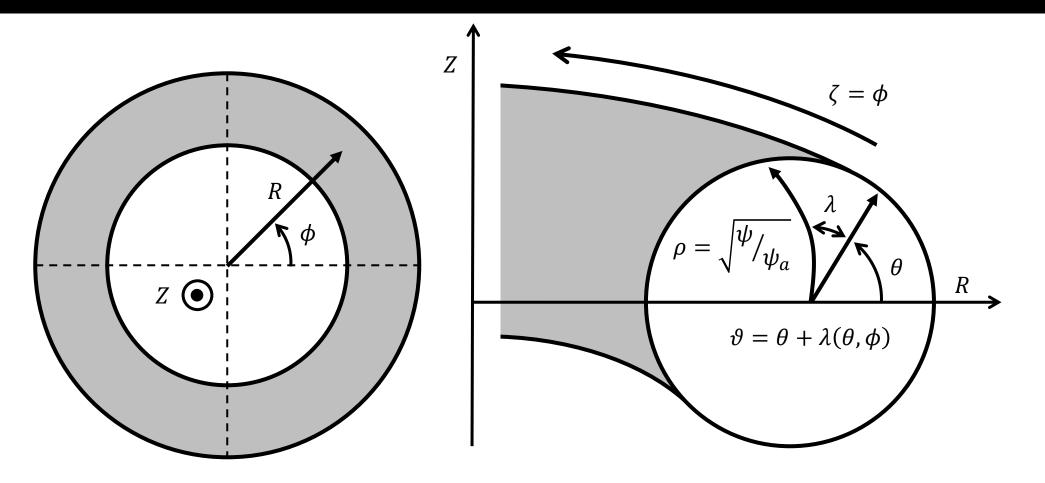
²F. Zernike, Mon. Not. R. Astron. Soc. **94**, 377–384 (1934).

³W. D. D'haeseleer, W. N. G. Hitchon, J. D. Callen, and J. L. Shohet, *Flux Coordinates and Magnetic Field Structure*, Springer Series in Computational Physics, edited by R. Glowinski, M. Holt, P. Hut, H. B. Keller, J. Killeen, S. A. Orszag, and V. V. Rusanov (Springer-Verlag, 1991).

⁴S. P. Hirshman and J. C. Whitson, Phys. Fluids **26**, 3553–3568 (1983).

Bonus Slides

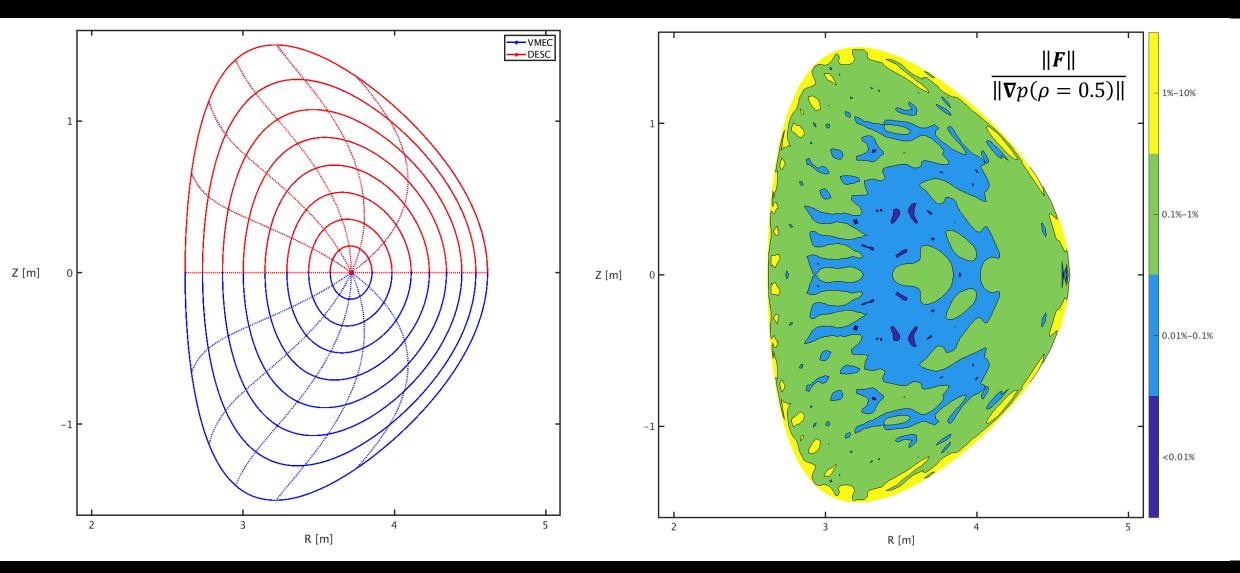
PEST¹ Flux Coordinates



toroidal coordinates: (R, ϕ, Z)

straight field-line coordinates: (ρ, ϑ, ζ)

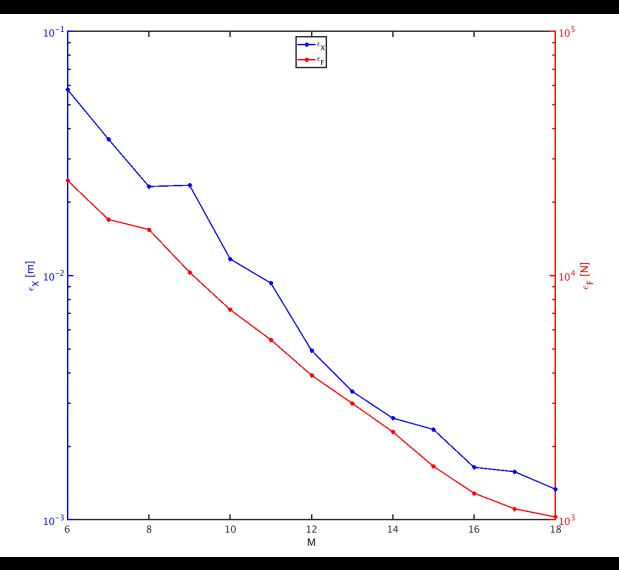
Axisymmetric Results: "D-shape" $\langle \beta \rangle \approx 3\%$



Axisymmetric Results: "D-shape" $\langle \beta \rangle \approx 3\%$

• Accuracy metrics:

 $\varepsilon_{x} = \left\langle \left\| \begin{bmatrix} \Delta R_{i} \\ \Delta Z_{i} \end{bmatrix} \right\| \right\rangle$ $\varepsilon_{F} = \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{1} \|F\|_{2} \sqrt{g} d\rho d\vartheta d\zeta$



Boundary Condition: Magnetic Axis

• An analytic function expanded near the origin of a disc must have a real Fourier series of the form^{1,2}:

$$f(\rho,\vartheta) = \sum_{m} \rho^{m} (a_{m,0} + a_{m,2}\rho^{2} + a_{m,4}\rho^{4} + \cdots) \cos(m\vartheta)$$
$$+ \sum_{m} \rho^{m} (b_{m,0} + b_{m,2}\rho^{2} + b_{m,4}\rho^{4} + \cdots) \sin(m\vartheta)$$

- The Zernike polynomials inherently satisfy this condition!
 - Reduces the number of variables by eliminating the unnecessary highfrequency modes near the axis
 - No additional boundary condition equations need to be solved

Boundary Condition: Last Closed Flux Surface

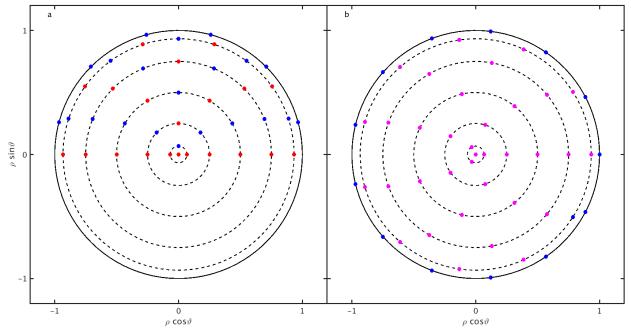
- Fixed-boundary surface is given as: $R^b = R^b(\theta, \phi), Z^b = Z^b(\theta, \phi)$
- Last closed flux surface is evaluated as: $R|_{\rho=1} = R(\vartheta, \zeta), Z|_{\rho=1} = Z(\vartheta, \zeta)$
- Introduce $\lambda(\theta, \phi)$ to convert between coordinates: $\vartheta = \theta + \lambda(\theta, \phi), \zeta = \phi$

$$R\Big|_{\rho=1} = \sum_{m,n} R_{mn} \mathcal{F}(\vartheta,\zeta) \implies R\Big|_{\rho=1} = \sum_{m,n} \tilde{R}_{mn} \mathcal{F}(\theta,\phi)$$
$$Z\Big|_{\rho=1} = \sum_{m,n} Z_{mn} \mathcal{F}(\vartheta,\zeta) \implies Z\Big|_{\rho=1} = \sum_{m,n} \tilde{Z}_{mn} \mathcal{F}(\theta,\phi)$$

• Boundary condition: $\sum_{l} \tilde{R}_{lmn} = R_{mn}^{b}$ $\sum_{l} Z_{lmn} = \tilde{Z}_{mn}^{b}$

Collocation Nodes

- The computational grid is a finite set of discrete points $(\rho_i, \vartheta_i, \zeta_i)$
- The force balance errors $f_{\rho}(\rho, \vartheta, \zeta) \& f_{\beta}(\rho, \vartheta, \zeta)$ are minimized at these nodes
- The equilibrium solution is still valid everywhere, and spectral collocation theory predicts *global* convergence
- Great flexibility in choosing the nodes
 - Control grid refinement
 - Avoid rational surfaces



Continuation Methods

- 1. Perturbations to solve for complex equilibria:
 - vacuum solution \rightarrow *pressure perturbation* \rightarrow finite- β solution
 - axisymmetric tokamak \rightarrow boundary perturbation \rightarrow 3D stellarator
- 2. Perturbations to optimize for quasi-symmetry:
 - axisymmetric tokamak \rightarrow boundary perturbation \rightarrow QA stellarator
 - non-QS equilibrium \rightarrow *perturb some inputs* \rightarrow more-QS equilibrium

Order of ODE to Solve

Order of Derivatives	Variables	Equations
0	R, Z	
1	$\partial_i R$, $\partial_i Z o B$	$\boldsymbol{\nabla}\cdot\boldsymbol{B}=0$
2	$\partial_{ij}R$, $\partial_{ij}Z \rightarrow J$	$\boldsymbol{J} \times \boldsymbol{B} = \boldsymbol{\nabla} p$
3	$\partial_{ijk}R$, $\partial_{ijk}Z$	$\boldsymbol{\nabla}\cdot\boldsymbol{J}=0$

- The equilibrium equations are a 2nd-order ODE
- Rational surface issues arise at the next higher level with $\nabla \cdot J = 0$

Equilibrium Example Inputs

Axisymmetric "D-shaped" Tokamak Non-Axisymmetric high-β Heliotron

$$R^{b} = 3.51 - \cos \theta + 0.106 \cos 2\theta$$

$$Z^{b} = 1.47 \sin \theta + 0.16 \sin 2\theta$$

$$\iota = 1 - 0.67\rho^{2}$$

$$p = 1.65 \times 10^{3} (1 - \rho^{2})^{2}$$

$$\psi_{a} = 1$$

$$R^{b} = 10 - \cos \theta - 0.3 \cos(\theta - 19\phi)$$

$$Z^{b} = \sin \theta - 0.3 \sin(\theta - 19\phi)$$

$$\iota = 1.5\rho^{2} + 0.5$$

$$p = 3.4 \times 10^{3} (1 - \rho^{2})^{2}$$

$$\psi_{a} = 1$$

Perturbation Example Inputs

Axisymmetric

Non-Axisymmetric

$$M = 6, N = 2$$

$$R^{b} = 5 - \cos \theta \qquad \qquad R^{b} = 5 - \cos \theta - 0.2 \cos(\theta - \phi)$$

$$Z^{b} = \sin \theta \qquad \qquad Z^{b} = \sin \theta - 0.2 \sin(\theta - \phi)$$

$$\iota = 1.618 \qquad \qquad \iota = 1.618$$

$$p = 0 \qquad \qquad p = 0$$

$$\psi_{a} = 1 \qquad \qquad \psi_{a} = 1$$